
1 23

Cluster Computing
The Journal of Networks, Software Tools
and Applications
 
ISSN 1386-7857
 
Cluster Comput
DOI 10.1007/s10586-017-1259-8

An efficient scheduling multimedia
transcoding method for DASH streaming in
cloud environment

Linh Van Ma, Jaehyung Park, Jiseung
Nam, Jonghyun Jang & Jinsul Kim



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Cluster Comput
DOI 10.1007/s10586-017-1259-8

An efficient scheduling multimedia transcoding method for DASH
streaming in cloud environment

Linh Van Ma1 · Jaehyung Park1 · Jiseung Nam1 · Jonghyun Jang2 · Jinsul Kim1

Received: 3 May 2017 / Revised: 23 September 2017 / Accepted: 9 October 2017
© Springer Science+Business Media, LLC 2017

Abstract As a result of technological evolution, stream-
ing service providers have been dealing with the problem
of delivery multimedia content to the diversity of devices
with different resolutions. This issue can be solved by using
dynamic adaptive streaming over hypertext (DASH) trans-
fer protocol. However, a transcoding job in DASH requires
a lot of computation resource which could lead to delaying
the starting of multimedia streaming. Recently, new studies
have addressed novel schedulingmethods on video transcod-
ing, but those research did not solve the problem entirely,
such as the solution did not concern server performance or
speed connection between a server and its requested users.
Moreover, the load and speed connection status of the data
servers is often unstable, leading to increasing the starting
delay. So in this article, we solve such problem by modeling
transcoding jobs in the form of an optimization problem and
propose an algorithm to find an optimal schedule to transcode
video source files. In which, we use moving average method
to find average points for a short period to deal with server

B Jinsul Kim
jsworld@chonnam.ac.kr

Linh Van Ma
linh.mavan@gmail.com

Jaehyung Park
hyeoung@chonnam.ac.kr

Jiseung Nam
jsnam@jnu.ac.kr

Jonghyun Jang
jangjh@etri.re.kr

1 School of Electronics and Computer Engineering, Chonnam
National University, 77, Yongbong-ro, Buk-gu, Gwangju
500-757, Korea

2 Electronics and Telecommunications Research Institute, 218
Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea

state changes. In the experiment, we implement our proposed
method with DASH to demonstrate the effectiveness of the
optimization scheduling method. In the system, we create
several servers running on the Docker platform to simu-
late a cloud environment. Experimental results show that our
methodology reduces the time of the transcoding process up
to 30% compared to existing research.

Keywords Cloud computing · Adaptive streaming ·
Transcoding · Data replication · Docker

1 Introduction

The rapid development of today’s technology provides a
way to access customized services based on demand. For
example, some people may be willing to spend money to
invest in expensive devices, such as iPhone 7, Samsung
Galaxy S7. On the one hand, these devices require the pro-
portion of devices to quality services, such as the S7 requires
high-definition (HD) video streaming. On the another hand,
people in remote areas do not have much interest in tech-
nology. For example, they have quite simple needs such
as watching video streaming at low quality on low-profile
phones. Therefore, a streaming service which can provide a
broad range of video quality from low to ultra-high qual-
ity is needed. Furthermore, the number of Internet users
is on the rise, and it has reached more than three billion
users by 2015 [1]. Consequently, streaming services can-
not meet the needs of such large numbers of users with a
small number of servers. Thus, cloud computing [2,3] has
emerged as a method of sharing resources, data between
computers and electronic devices based on user require-
ments.

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-1259-8&domain=pdf


Cluster Comput

With the active development of social services such as
Facebook, Twitter, video streaming is necessary to con-
vey information to users because humans are familiar with
images rather than sound and words. As mentioned above,
we cannot meet the heterogeneous Internet users’ video
streaming requirements if we do not have efficient stream-
ing delivery solutions. Adaptive streaming [4] has emerged
as a technology that can adapt to the uncertainty of net-
work. Specifically, it is a video streaming technology where
video quality can vary depending on the state of the net-
work and device performance. A streaming server segments
a multimedia file into segments with a duration about 2–
10s. Then, the server creates different versions of those files
with different qualities using the same content of multi-
media files. Recent studies [5,6] addressed that, we could
install the adaptive streaming systems in a cloud environ-
ment, which could provide video streaming seamlessly in
any network environment as well as improve the system user-
friendliness.

Besides the advantages of dynamic adaptive streaming
over hyper text transfer protocol, HTTP (DASH), some of the
DASH problems on cloud computing are not fully resolved
yet, such as the trade-off between files replication and media
transcoding in data centers. In a more specific way, when
a user uploads data to a server, a central server is respon-
sible for managing the data servers. It decides whether to
transcode the uploaded files or replicate the files from other
data servers which contain the content files. If the server
handles the transcoding file and does not have much compu-
tation resource, it may delay the starting of video streaming.
Instead of this, the center server might consider replicating
DASH files from other servers. Furthermore, recent stud-
ies have not focused on the choice of data centers to serve
user requests. They only interested in common parameters
when choosing a serving server such as bandwidth or server
load, not a combination of both. Furthermore, those studies
also only consider the present value of cloud measurement
parameters such as server load, network throughput. This
selection-based method will sometimes result in rough esti-
mates or non-optimal options which lead to increasing the
starting delay of a video streaming. Therefore, in this article,
we propose a method to reduce the delay which improves the
quality of video streaming in DASH. Specifically, by using a
server that manages other data servers in the cloud, we man-
age servers in the cloud and propose a transcoding schedule
to optimize the performance of the network as well as reduce
the starting delay of DASH streaming. In the termination,
this research has two contributions as the following. First, we
state recent studies of transcoding and related topics. Then,
we propose a heuristic to schedule to reduce transcoding time
using several measurement metrics for evaluating the perfor-
mance of a server.

Fig. 1 A comparison between VMs and containers

The rest of paper is organized as follows. In Sect. 2, we
present an overview of Docker, DASH streaming in cloud
computing and transcoding multimedia in the cloud. We
present related works in Sect. 3. In Sect. 4, we introduce the
problem of DASH streaming and model this as an optimiza-
tion problem. In Sect. 5, we describe our experiment and
discuss the results achieved. Section6 presents our findings
with future research directions.

2 Background information

2.1 An overview of Docker and virtualization
technologies

Docker container is a virtualization technology. The con-
tainer puts everything, such as system libraries, code, system
tools, into a file-system. Especially, we can use the file-
system anywhere and execute the system anytime on any
operating systems (OSs) supported Docker. The system has
the same behavior regardless of OS because it has the same
libraries, code, etc. On Linux and Windows system, we have
an additional abstraction layer and automation virtualization
OS level. Furthermore, Docker containers run independently
within a single Linux instance because it uses isolation fea-
tures of Linux kernel such as kernel namespaces and cgroups.
Therefore, it allows a container avoid the overhead of main-
taining and starting virtual machines (VMs). Figure1 shows
a comparison between VMs and Docker containers. While
VMs perform efficiently at isolation with a complete sys-
tem, containers work at the process level of OS, which
offers them much beneficial of software delivery and sys-
tem deployment. As shown in Fig. 2, Docker implements
a high-level application program interface provided by the
Linux kernel, such as namespaces and primarily cgroups,
to bring light-weight containers that run processes in isola-
tion.

Linux containers (LXC) [7] is an OS-level virtualization
method for running multiple isolated Linux systems (con-
tainers) on a control host using a single Linux kernel. A

123

Author's personal copy



Cluster Comput

Fig. 2 Accessing virtualization features of the Linux kernel of Docker

single server or VM can run several containers simultane-
ously becauseDocker containers are lightweight.An analysis
in [8] found that a typical Docker user case involves running
five containers per host, but that many organizations run ten
or more. By using containers, we can provision processes,
restrict services and isolate resources to have an almost
entirely private view of the OS with network interfaces, file
system structure and their process identifier space. In addi-
tion, multiple containers share the same kernel, but each
container can be constrained to only use a defined amount
of resources, such as input/output, memory and central pro-
cessing unit (CPU).

2.2 Adaptive streaming in cloud environment

Adaptive bitrate streaming (ABS) is a streaming technol-
ogy which enables high-quality multimedia streaming over
HTTP. It changes video streaming representations alongwith
network conditions such as throughput. It makes multimedia
content available at a variety of different bitrates so that a
client can retrieve the multimedia streaming without notice-
able change of video quality or re-buffering while playing
back. Also, ABS divides contents into small HTTP-based
segments so that a client can obtain a file by using GET or
POST command in HTTP. Each segment has a length around
2–10s. We have several version of ABS such as DASH sup-
ported by Moving Picture Experts Group (MPEG), HTTP
live streaming supported by Apple and it is streaming stan-
dard in iPhone and iPad, smooth streaming by Microsoft,
Adobe HTTP dynamic streaming by Adobe. In this research,
we only consider DASH system. As shown in in Fig. 3, a
DASH client has an adaptive controller which supports the
client automatically select video quality based on network
conditions. A media presentation description (MPD) in an
extensible markup language file managing information of
segments as well as video representations. At the initial con-
nection, the client obtains theMPDfile to prepare an adaptive
strategy to deal with network fluctuations.

Fig. 3 An overview of dynamic adaptive streaming over HTTP

Network communication always deals with the problem
of optimizing transmitted data over the limited bandwidth.
Especially, in mobile network communication, where the
maximumtransmitted is lower than thewire connection. Intu-
itively, common sense is to reduce data transmission while
maintaining the transmission time and the amount of infor-
mation over that period is using data compression techniques
such as video coding. In fact, video coding compresses data
by comparing different parts of a frame with other frames
to find redundant information in the frame. Consequently,
it uses less information to describe the frame rather than
using the original data. Some advanced video coding (AVC)
is H.261 [9], AVC/H.264 [10], and high-efficiency video
coding (HEVC) [9], which is one of the most efficiency
video compression standards in the multimedia, has been
using in 4K (resolution of at least 3840 × 2160) or ultra
video streaming projects recently. In HEVC, intra-frame is
the based frame where original data of the original pic-
tures locates, which uses to predict information for other
frames. An unusual number of a broadcasting system has
released their first ultra-HD (UHD) television over digital ter-
restrial television networks such as Japan, Republic ofKorea,
France, and Spain. Most of them used the most advantage of
compression data technique HEVC. It implies that compres-
sion techniques become an essential technology to optimize
transmission data over the network.

In a context of HD video transmission and distribution
[11], an uncompressed HD digital video is used to demon-
strate that a high-quality multi-party video conference based
on a transmission of uncompressed HD streams is already
achievable. Moreover, the contribution of a hardware archi-
tecture for H.264/AVC decoders proposed in [12] showed
that the processing capability of the proposed architecture is
to support (2048×1024,30 fps) videos at 120MHz. Inwhich,
a hybrid task pipelining scheme is presented to reduce the
internal memory size and bandwidth significantly. Besides,
they also proposed an appropriate degree of parallelism for
each pipeline task.

123

Author's personal copy



Cluster Comput

Fig. 4 A process of transcoding a source video to different represen-
tations

Nowadays, we are evidencing of the increasing demand
for HD multimedia contents in the mobile environment. The
increase requires an innovative network design which should
satisfy quality-of-service (QoS) requirements of multimedia
applications. In the context of HD multimedia transmission,
the scalable extension of H.265/HEVC and scalable HEVC
(SHVC) [13] are a potential video coding which supports
encoding multimedia up to 8K UHD. Furthermore, SHVC
deployment reduces implementation cost significantly. It also
supports a rich set of scalability features. However, it requires
much computing resource to encode and decode multimedia
streaming. This intensive computation is a difficult task for
mobile devices as they usually have limited computational
resource.

2.3 Multimedia transcoding in the cloud

In ABS, transcoding a source video file into different repre-
sentations is required in the process of making the adaptive
streaming as shown in Fig. 4. First, this job reads an input
multimedia file and determines the maximum resolution of
the input. Then, it transcodes the file into different resolutions
which cannot greater than the determined maximum value.
As addressed in Sect. 2.2 and [14], transcoding time and com-
putation resource requirements for making DASH files (i.e.,
transformatting .mp4 files to .m4s files), are only a few mil-
liseconds. Therefore, in this study, we focus on scheduling
methods for the video transcoding jobs which require inten-
sive computation resources. Intuitively, low resolution and
short video duration do not consume a lot of resources com-
pared to high resolution and longduration one.Besides, video
transcoding time increases exponentially when the number
of transcoded resolutions and video length increase. There-
fore, estimating transcoding time could lead to the reduction
of time for an uploaded video.

As addressed in research [15], the authors divided multi-
media transcoding into three categories which are online,
offline and hybrid transcoding. First, they referred the offline
one as performing transcoding before the delivery process. In

contrast, the online one can be seen as a real-time transcod-
ing task. It only performs if a client requests a video segment
with a particular quality resolution. Therefore, the task comes
along with the process of video delivery and requires pre-
dictive algorithms which can deduce the right time to start
transcoding tasks.

3 Related works

Cloud computing is now a leading-edge Internet technology,
in which virtualization technology is one of the important
parts of cloud computing system. Virtualization in comput-
ing refers to the act of creating a virtual (rather than actual)
version of something, including but not limited to a virtual
computer hardware platform, OS, storage device, or com-
puter network resources. Recently, Docker is a new type
of virtualization technology which was addressed in [16]
by describing Docker applications and its advantages in the
cloud computing.

High latency, network congestion, and network bot-
tlenecks are some of the problems in cloud computing.
By moving from centralized to a decentralized paradigm,
edge computing could offload the processing to the edge
which indirectly reduces application response time and
improves overall user experience. An evaluated Docker [17],
a container-based technology as a platform for edge comput-
ing presentedwith four fundamental criteria as the following:
(1) deployment and termination, (2) resource and service
management, (3) fault tolerance and (4) caching. Their eval-
uation and experiment showed that Docker provided fast
deployment, small footprint and good performance which
make it potentially a viable edge computing platform.

Current Docker-based container deployment solutions are
aimed at managing containers in a single-site, which limits
their capabilities. As more users look to adopt Docker con-
tainers in dynamic, heterogeneous environments, the ability
to deploy and efficiently manage containers across multiple
clouds and data centers becomes of utmost importance. Fur-
thermore, the authors [18] proposed a prototype framework,
called C-Ports, that enables the deployment and manage-
ment of Docker containers across multiple hybrid clouds
and traditional clusters while taking into consideration user
and resource provider objectives and constraints. The frame-
work leverages a constraint programming model to allocate
or deallocate resources as well as to deploy containers on
top of these resources. Besides, the author [8] examined
how the popular emerging technology Docker combines sev-
eral areas from systems research—such as OS virtualization,
cross-platform portability, modular re-usable elements, and
versioning, to address the challenges of computational repro-
ducibility.

123

Author's personal copy



Cluster Comput

Cloud computing provides a variety of services with
the growth of their offerings. Due to efficient services,
it faces numerous challenges. Virtualization offers users a
plethora computing resources by Internet without managing
any infrastructure of VM. With network virtualization, VM
manager gives isolation among different VMs. But, some-
times the levels of abstraction involved in virtualization have
been reducing cloud workload performance which is also a
concern when implementing virtualization to the cloud com-
puting domain. Consequently, the authors in [19] explored
how the vendors in the cloud environment are using contain-
ers for hosting their applications and the performance of VM
deployments. In addition, they also compared VM and LXC
on the QoS, network performance, and security evaluation.

In adaptive streaming, transcoding multimedia to dif-
ferent bitrates and qualities requires extensive computation
resource. Specifically, it takes most of the time in the stages
of delivering video streaming to users. Therefore, we need
a cloud environment that can handle such high computing
demands. Similar to our approach to reducing the time of
transcoding, the authors in [14] proposed a video transcod-
ing scheduling method for DASH in the cloud. First, they
prioritized each job of transcoding and adjusted transcod-
ing mode based on the cloud system load. In that way, they
reduced video transcoding completion time and balanced the
cloud system load as well as smoothing video playback at
a client side. Furthermore, the authors in [6] formulated an
optimization problem inmultimedia on-demand. In the prob-
lem, they minimized the total operation cost of delivering
resources based on a tradeoff between bandwidth, caching
and transcoding costs. Besides, they also found an optimal
strategy to deliver DASH segments for users. As a result,
their approach significantly saved costs compared to exist-
ing methods in multimedia streaming.

In the approach of optimization problems, the authors [20]
presented an integer linear program to maximize user quality
experience. They also proposed a heuristic algorithm that
scaled to a large number of videos and users in the cloud. As
a result, their system performance led to the optimal global
solution compared to the current industry standards which
could lead the optimization problem to sub-optimal solution.

4 Overview of proposed cloud streaming system

In DASH streaming, when a client uploads a multimedia
file to the DASH server, transcoding software is responsible
for making copies of files with different qualities. This job
requires a lot of computation resources as well as time to
complete the process of transcoding. It is hard for servers
with a heavy load to handle the transcoding in real time.
Moreover, a client can upload more than one file. Especially,
the server load capacity is heavier as it has to handle more

requests. Therefore, the management of DASH streaming
server is necessary to improve the performance of the DASH
streaming system.As shown in Fig. 5, themanagement server
does two important tasks. First, it serves as a normal DASH
streaming server. Secondly, it has the ability to manage other
servers so that it can redirect requests from the client to other
servers. The management server has no additional responsi-
bility to a request from a client when it redirects the request
to other servers. To do so, the management server requires
high computation resource to accomplish such tasks, and its
network speed is sufficient to provide real-time response to
a significant number of requests from clients.

In this article, we use seven parameters to evaluate the
performance of a DASH streaming server. If we manage
server performance efficiently, we can know how quickly a
server responds to a certain request. Regarding local mea-
surement, we have; (1) free memory, (2) working CPU,
(3) load average, (4) total memory. These local primary
metrics represent the current status of a system server.
Regarding network measurement, we have; (5) throughput
upload, (6) ping, (7) throughput download. Formally, we
can name these parameters respectively as the following:
m1, m2, m3, m4, m5, m6, m7.As shown in Fig. 6,manage-
ment server periodically receives measurement information
from DASH servers. Then, it finds a server that is best serv-
ing a coming request from a client. Besides, it orders the
DASH servers into an order. Furthermore, the management
server also shares information about the order for all other
servers through a synchronization mechanism using a file-
sharing protocol such as file transfer protocol (FTP). Thus,
DASH servers use this information for the purpose of retriev-
ing DASH files from other servers in case it does not serve
a transcoding request from a client. This technique is a solu-
tion for sharing DASH files of a server when it contains a
multimedia video while other servers do not have the video
content. In addition, a server can retrieve DASH files from
other servers based on metric information from the available
parameters. For example, Servers A and B have the same
DASH video, and Server A is faster than B 25%. If Server
C does have the video content, it can get 75% video DASH
files from A and 25% DASH files from B. We can use any
file-sharing protocols to get these DASH files such as FTP.

Before the modeling paradigm, we introduce the moving
average technique to reduce the variance of measurement
values of a server such as a load, throughput. For example, a
server performs requests coming from clients continuously.
Intuitively, the values that we measure at a given time do
not accurately describe the state of the server. To reduce the
variance of values, we use a moving average to calculate the
mean of server parameters over a given period.

In statistics, moving average is a calculation to analyze
data sets. Especially, it is commonly used to analyze time
series to smooth out short-term fluctuations and highlight

123

Author's personal copy



Cluster Comput

Fig. 5 DASH cloud streaming system overview

Fig. 6 Management server manages parameter from other servers

longer-term trends or cycles as shown in Fig. 7. It works by
creating a series of average points of the data set.More specif-
ically, the first element of the moving average is calculated
by averaging the initial set of data. Then, the next element
is obtained by shifting forward that excludes the first num-
ber of the series and includes the next number following the
original data set. Continuously, the process creates a new
data set, then averages and repeats over the data set. There
have several forms of the moving average: simple average,
and cumulative average, or weighted average forms. In this
research, we use cumulative moving average with a given
number of measurement points in which data arrive in order
as streaming data.

Values in the near future are the result of changes in the
past. In other words, the change of past parameter values
affects the values in the near future. It’s an idea to predict
the average value of DASH streaming server parameters. As
shown in Fig. 8, we compute the mean of the values for a
given period of time with approximately k steps. Each step
is the value at the time we perform the estimation process

>

>

Time

M
ea

su
re

 v
al

ue

Real data
Moving average

Fig. 7 Moving average calculation

Fig. 8 Reducing fluctuation of data using moving average

to retrieve the current server parameters. At each step, we
perform a subtraction between the real and average values,
which results in the average value of k steps. We anticipate
the average value Vi of any parameter vi of the next step by
using (1) (i ∈ N).

Vn+1 = Vn +
n∑

i=n−k

vi − Vi
k

. (1)

As mentioned above, we can assign weights to each
parameterm1, m2, m3, m4, m5, m6 andm7 respectively by
the following w1, w2, w3, w4, w5, w6 and w7 and satisfies
(2), to sort the servers in an order. The total metric mea-
surement of a server can be given by (3). Each server has a
different total metric, we order the servers into an order by
using the total metric.

7∑

i=1

wi = 1, (2)

M =
7∑

i=1

miwi , (3)

VT T = γ Na
r D

b
v . (4)

When receiving a request from a client, a server can
decide whether to get a source video file to transcode, or
retrieve all existing DASH files. This method depends on
two factors which are local and network measurement. If the
server has not sufficient computation resource for transcod-
ing a multimedia file in a short time, it replicates data from
other servers. For example, network connection throughput

123

Author's personal copy



Cluster Comput

between a server and a client is fast enough to meet the abil-
ity of response an incoming request from clients in a short
time, could lead to improving DASH cloud performance. On
the basic of the research [14], we estimate transcoding time
VT T for a video by using (4) where Nr represents number
of transcoding resolutions, Dv describes the video length,
γ ∈ [0, 1] is a effect factor in the estimation. a, b are the
fitting coefficients which can be achieved from [14] as shown
in (5).

[a b] =
{

[0.796 0.621] (low)

[1.152 0.700] (medium)
(5)

min
Sl j

∑

j

Sl j

subject to
n∑

j=1

4∑

i=1

mi j ≤
∑

j

L j

n∑

j=1

7∑

i=5

mi j ≤
∑

j

N j

Sl j = α

4∑

i=1

(−1)imi jwi j

+ β

7∑

i=5

(−1)imi jwi j

∀ j, i ∈ N , α + β = 1, α, β ∈ [0, 1].

(6)

Algorithm 1: Fuzzy Representation Inference
Data: An uploaded video from a user
Result: An optimized server to transcode the video

1 Sli : Estimation time of transcoding at server i ;
2 Calculating loads of server i using (1);
3 Estimating the total load of server i using (2) and (3);
4 while not end of transcoding request do
5 QueuingTranscodingJob(); push a new transcoding job into a

queue;
6 for job in the queue do
7 EstimateTranscodingTime(); //for each video in the queue

using (4) and (5)
8 end
9 SolvingOptimizationProblem(); // using (6);

10 // get an ordering list of transcoding jobs.
ExecutingTranscoding(); // the jobs in the ordering queue;

11 end

In the evaluation metrics, we consider two factors of the
client side at the view of the response of a system for a
given request from a user. First, start latency (Sl ) describes
the period between the time when a video source starts
uploading to the cloud and the time when the video is avail-
able for playback. We define Sl j as the start latency on

Table 1 List of video source file in the experiment

Source video Max resolution Duration

(Paddy_Sun)_Sunflower 360p 3m30s

SIXTEEN_Major_A_Happy 720p 2m31s

Avicii___Wake_Me_Up 720p 4m32s

Britt Nicole - Ready or Not 720p 2m58s

Craig David - Insomnia 720p 3m40s

4K_Hawaii Drone Footage 2160p 11m10s

NewYork In_4K 2160p 4m41s

server j th. Second, the number of representations (Nr ) rep-
resents a quality range which the cloud can provide for a
user. Suppose we have n ∈ N servers in a cloud. A server
j ∈ N, j ≤ n has load measurement with six parameter
described above, is mi j , i ∈ {1, 2, . . . , 6}. Maximum load
of the server is L j , and maximum network measurement
is N j . Our goal is to minimize the total start latency with
limited cloud computation resource and network connec-
tion throughput. Reasonably, the time of transcoding process
increases if server load increases and the network through-
put decreases. Therefore, we form optimization problem as
shown in (6) with α, β are factors which describe relations
between server loads and network states with transcoding
time. As such, we can solve the optimization problem with
a solution which refers mostly to whether the network or
local side. For example, we can incline to the network side
by assigning α = 0.4 > β = 0.6. The solution of this prob-
lem is an ordering list of transcoding jobs which reduce total
transcoding time. In conclusion, we summarize the proposed
method in Algorithm1.

5 Experiment and discussion

In this section, we implemented a cloud system using Docker
with the following descriptions. First, we installed a DASH
streaming system and made a Docker container which con-

Table 2 Transcoding bitrate information

Video standard Resolution Bitrate (bits)

144p 80 × 144 196,217

240p 134 × 240 295,360

360p 202 × 360 394,284

480p 270 × 480 493,986

720p 404 × 720 1,478,541

1080p 606 × 1080 2,934,266

1440p 810 × 1440 5,842,639

2160p 3840 × 2160 21,400,447

123

Author's personal copy



Cluster Comput

Fig. 9 Transcoding time for each representation of each video

FIFO C e Our Proposed Methodh

Fig. 10 Multimedia transcoding time comparison

tains the DASH server as well as the runtime environment.
The DASH implementation is a Node.js-based [21,22] sys-
tem. Secondly, several software applications are installed to
support adaptive streaming. For example, we used the Fast
ForwardMotion Picture Experts Group (FFMPEG) software
[23] to transcode a multimedia video file into different pre-
sentations. Additionally, MP4Box software [24] generates
an MPD file which contains information of a DASH video
streaming. Moreover, we used dash.js open source [25] to
build a client player interface which can change video rep-
resentations along with the fluctuation of throughput. In the
system, we implemented our proposed optimization method
in a management server, where we process all requests from
clients to solve the optimization problem.

We tested with six video source files obtained from
YouTube as shown in Table1. The detail of transcoding
bitrate is depicted in Table2 with maximum vertical resolu-
tion up to 4K. We implemented a program in servers which
transcode a source video from 144p to the maximum vertical
resolution of a given video. By doing this way, we ensure
that users can watch streaming video in different qualities
depending on the quality of the network.

Transcoding time requires for a video, is proportional to
a number of resolution and video duration. As shown in
Fig. 9, a video named “4K_Hawaii Drone Footage” increased
transcoding time dramatically compared to other videos with
lower duration length and fewer resolutions.

As addressed in Sect. 2.1, we can run Docker container
directly without installing any addition libraries or runtime
environment. In the illustration of our approach, we com-
pared the proposed method with first in first out (FIFO)
schedule policy [26] in a cloud environment. We ran three
DASH streaming servers in which one server is a manage-
ment server and other two act as data servers. As a result in
Fig. 10, our method reduced transcoding time significantly
compared to existingmethods. Besides, Figs. 11 and 12 show

0 200 400
8.3435

8.3435

8.3435
x 10

9 Total memory (bytes)

0 200 400
0

5

10
x 10

8Freemem memory (bytes)

0 200 400
0

50

100
Working CPU

0 200 400
0

10

20
Load average

0 200 400
12

13

14

15
Throughput upload (Mbps)

0 200 400
11

12

13

14
Throughput download (Mbps)

0 200 400
137

138

139
Ping (ms)

Fig. 11 Performance of a server using FIFO schedule policy

123

Author's personal copy



Cluster Comput

0 100 200 300
1.6749

1.6749

1.6749
x 10

10 Total memory (bytes)

0 100 200 300
1

1.5

2

2.5
x 10

9 Freemem memory (bytes)

0 100 200 300
0

50

100
Working CPU

0 100 200 300
0

10

20

30
Load average

0 100 200 300
21

22

23

24
Throughput upload (Mbps)

0 100 200 300
36

37

38

39
Throughput download (Mbps)

0 100 200 300
16

17

18
Ping (ms)

Fig. 12 Performance of a server with seven given parameters using our proposed method

a comparison between our method and the FIFO in the same
test of transcoding three video files. Our approach completed
the task within 300s (6min) meanwhile the FIFO method
spent 400s completing the task. Recall that, by usingDocker,
we are able to join and connect computers into onewhich also
called Docker Swarm [8]. As shown in Fig. 12, total memory
and throughput are merged to have more resource providing
for a task. While doing transcoding task at servers, the FFM-
PEG software used 100% of total CPU capacity which could
speed up and complete the job as quickly as the system can.

6 Conclusion

In this article, we have focused our research on the per-
formance enhancement of DASH streaming system in a
cloud environment. By finding an ordering list of servers for
transcoding multimedia files, we proposed a method which
reduced the total transcoding time of video source files. First,
we used moving average to weaken the impact of the contin-
uous change of the measurement values. Then, we proposed
the scheduling algorithm for transcoding video files. As a
result, it showed that our method reduced the transcoding
time up to 30% compared to existing research.

In the future research, we intend to investigate in network
functionalization to manage a cloud streaming system and
control follow of packages efficiently.

Acknowledgements Thisworkwas supported by ‘TheCross-Ministry
Giga KOREA Project’ Grant from the Ministry of Science, ICT and
Future Planning, Republic of Korea (GK16P0100, Development of Tele
Experience Service SW Platform based on Giga Media).

References

1. World Wide Web Consortium, et al.: Internet Users. Internet Live
Stats (2015)

2. Rittinghouse, J.W., Ransome, J.F.: Cloud Computing: Implemen-
tation, Management, and Security. CRC Press, Boca Raton (2016)

3. Puthal, D., Sahoo, B., Mishra, S., Swain, S.: Cloud computing
features, issues, and challenges: a big picture. In: 2015 International
Conference on Computational Intelligence and Networks (CINE),
pp. 116–123. IEEE (2015)

4. Seufert, M., Egger, S., Slanina, M., Zinner, T., Hobfeld, T., Tran-
Gia, P.: A survey on quality of experience of HTTP adaptive
streaming. IEEE Commun. Surv. Tutor. 17(1), 469–492 (2015)

5. Wang, X., Chen, M., Kwon, T.T., Yang, L., Leung, V.C.: AMES-
Cloud: a framework of adaptive mobile video streaming and
efficient social video sharing in the clouds. IEEE Trans. Multimed.
15(4), 811–820 (2013)

6. Jin, Y.,Wen, Y.,Westphal, C.: Optimal transcoding and caching for
adaptive streaming in media cloud: an analytical approach. IEEE
Trans. Circuits Syst. Video Technol. 25(12), 1914–1925 (2015)

7. Joy, A.M.: Performance comparison between Linux containers and
virtual machines. In: 2015 International Conference on Advances
in Computer Engineering and Applications (ICACEA), pp. 342–
346. IEEE (2015)

8. Boettiger, C.: An introduction to Docker for reproducible research.
ACM SIGOPS Oper. Syst. Rev. 49(1), 71–79 (2015)

9. Pourazad, M.T., Doutre, C., Azimi, M., Nasiopoulos, P.: HEVC:
the new gold standard for video compression: how does HEVC
compare with H.264/AVC? IEEE Consum. Electron. Mag. 1(3),
36–46 (2012)

10. Hannuksela, M.M., Rusanovskyy, D., Su, W., Chen, L., Li, R.,
Aflaki, P., Lan,D., Joachimiak,M., Li,H.,Gabbouj,M.:Multiview-
video-plus-depth coding based on the advanced video coding
standard. IEEE Trans. Image Process. 22(9), 3449–3458 (2013)

11. Wu, J., Yuen, C., Wang, M., Chen, J.: Content-aware concurrent
multipath transfer for high-definition video streaming over het-
erogeneous wireless networks. IEEE Trans. Parallel Distrib. Syst.
27(3), 710–723 (2016)

12. Tekalp, A.M.: Digital Video Processing. PrenticeHall Press, Upper
Saddle River (2015)

13. Boyce, J.M., Ye, Y., Chen, J., Ramasubramonian, A.K.: Overview
of SHVC: scalable extensions of the high efficiency video coding
standard. IEEE Trans. Circuits Syst. Video Technol. 26(1), 20–34
(2016)

14. Ma, H., Seo, B., Zimmermann, R.: Dynamic scheduling on video
transcoding for MPEG DASH in the cloud environment. In: Pro-
ceedings of the 5th ACM Multimedia Systems Conference, pp.
283–294. ACM (2014)

15. Krishnappa,D.K., Zink,M., Sitaraman,R.K.:Optimizing the video
transcoding workflow in content delivery networks. In: Proceed-
ings of the 6th ACMMultimedia Systems Conference, pp. 37–48.
ACM (2015)

123

Author's personal copy



Cluster Comput

16. Liu, D., Zhao, L.: The research and implementation of cloud
computing platform based on Docker. In: 2014 11th Interna-
tional Computer Conference onWavelet ActiveMedia Technology
and Information Processing (ICCWAMTIP), pp. 475–478. IEEE
(2014)

17. Ismail, B.I., Goortani, E.M., Ab Karim, M.B., Tat, W.M., Setapa,
S., Luke, J.Y., Hoe, O.H.: Evaluation of Docker as edge computing
platform. In: 2015 IEEE Conference on Open Systems (ICOS), pp.
130–135. IEEE (2015)

18. Abdelbaky, M., Diaz-Montes, J., Parashar, M., Unuvar, M., Stein-
der, M.: Docker containers across multiple clouds and data centers.
In: 2015 IEEE/ACM 8th International Conference on Utility and
Cloud Computing (UCC), pp. 368–371. IEEE (2015)

19. Barik, R.K., Lenka, R.K., Rao, K.R., Ghose, D.: Performance anal-
ysis of virtual machines and containers in cloud computing. In:
2016 International Conference onComputing, Communication and
Automation (ICCCA), pp. 1204–1210. IEEE (2016)

20. Aparicio-Pardo, R., Pires, K., Blanc, A., Simon, G.: Transcoding
live adaptive video streams at a massive scale in the cloud. In:
Proceedings of the 6th ACMMultimedia Systems Conference, pp.
49–60. ACM (2015)

21. Madsen, M., Tip, F., Lhoták, O.: Static analysis of event-driven
Node.js JavaScript applications. In: ACM SIGPLAN Notices,
vol. 50, pp. 505–519. ACM (2015)

22. Chaniotis, I.K., Kyriakou, K.I.D., Tselikas, N.D.: Is Node.js a
viable option for building modern web applications? A perfor-
mance evaluation study. Computing 97(10), 1023–1044 (2015)

23. FFMPEG Team: http://FFmpeg.org (2013)
24. MP4Box G: Multimedia Open Source Project (2014)
25. Mueller, C., Lederer, S., Poecher, J., Timmerer, C.: Demo paper:

Libdash-an open source software library for the MPEG-DASH
standard. In: 2013 IEEE International Conference on Multimedia
and Expo Workshops (ICMEW), pp. 1–2. IEEE (2013)

26. Li, J., Ma, T., Tang, M., Shen, W., Jin, Y.: Improved FIFO schedul-
ing algorithm based on fuzzy clustering in cloud computing.
Information 8(1), 25 (2017)

Linh Van Ma is currently an
M.S. Candidate at the Smart
Mobile and Media Computing
Laboratory, School of Electron-
ics and Computer Engineering,
Chonnam National University,
South Korea. He received his
B.S. Degree from the School of
Applied Mathematics and Infor-
matics, Hanoi University of Sci-
ence and Technology, Vietnam
in 2013. He was an Engineer
at the Samsung Vietnam Mobile
R&D Center in 2013. His major
interests are in the research areas
of Mobile Cloud Computing and

Applied Mathematics in Network Communication.

JaehyungPark receivedhisB.S.
in computer science from Yonsei
University, Korea, in 1991, and
his M.S. and Ph.D. in computer
science from Korea Advanced
Institute of Science and Technol-
ogy (KAIST),Korea, in 1993 and
1997, respectively. From 1997 to
1998, he was with the Center for
Artificial Intelligence Research
(CAIR) in KAIST. From 1998 to
2002, he was with the Network
Laboratory in ETRI. Since 2002,
he has been with the faculty
ofChonnamNationalUniversity,
Korea, where he is currently an

associate professor with the School of Electronics and Computer Engi-
neering. His research interests are Internet Routing, Multicast Routing,
Network Security, Wireless Mesh Networks, and Wireless Mesh/Ad-
hoc Networks.

Jiseung Nam received his Ph.D.
degree in computer science and
engineering from the University
of Arizona, the USA in 1992.
He worked as a researcher at
the Chonnam National Univer-
sity Center for Information and
Communications Specialization,
Gwangju, S. Korea from 1999 to
2001. Currently, he is a profes-
sor in Chonnam National Uni-
versity, Gwangju, South Korea.
His research interests include
Communication protocol, Inter-
net real-time services, and rout-
ing.

Jonghyun Jang received his
Ph.D. Degree in Computer Sci-
ence and Engineering from Han-
kuk University of Foreign Stud-
ies, Yongin, Republic of Korea,
in 2004. Since 1994, he has been
with ETRI, where he is cur-
rently a Principal Member of the
Research Staff as well as a Team
Leader of theReal andEmotional
Sense Platform Research Sec-
tion. He has worked on several
projects for the development of
programming environments and
PCS since 1994. His research

interests are real-time middleware for telecommunication systems,
home networking systems, and real sense media services.

123

Author's personal copy

http://FFmpeg.org


Cluster Comput

Jinsul Kim received the B.S.
Degree in Computer Science
from the University of Utah,
Salt Lake City, Utah, USA in
2001, and the M.S. and Ph.D.
Degrees in Digital Media Engi-
neering, Department of Informa-
tion and Communications of the
Korea Advanced Institute of Sci-
ence and Technology (KAIST),
Daejeon, South Korea in 2005
and 2008. He worked as a
Researcher in the IPTV Infras-
tructure Technology Research
Laboratory, Broadcasting/
Telecommunications Converge-

nce Research Division, Electronics and Telecommunications Research
Institute (ETRI), Daejeon, Korea from 2005 to 2008. He worked as
a Professor in the Korea Nazarene University, Chon-an, Korea from
2009 to 2011. Currently, he is a Professor in Chonnam National Uni-
versity, Gwangju, Korea. His research interests include QoS/QoE,
Measurement/ Management, IPTV, Mobile IPTV, Smart TV, Multime-
dia Communication and Digital Media Arts.

123

Author's personal copy


	An efficient scheduling multimedia transcoding method for DASH streaming in cloud environment
	Abstract
	1 Introduction
	2 Background information
	2.1 An overview of Docker and virtualization technologies
	2.2 Adaptive streaming in cloud environment
	2.3 Multimedia transcoding in the cloud

	3 Related works
	4 Overview of proposed cloud streaming system
	5 Experiment and discussion
	6 Conclusion
	Acknowledgements
	References




